SBI Workflow Overview

Simulation-Based Inference: A Practical Guide

We provide a practical guide for applying SBI methods, outlining a structured workflow with guidelines and diagnostic tools for every stage—from setting up simulators to validating results.

August 2025 · Michael Deistler*, Jan Boelts*, Peter Steinbach, Guy Moss, Thomas Moreau, Manuel Gloeckler, Pedro L. C. Rodrigues, Julia Linhart, Janne K. Lappalainen, Benjamin Kurt Miller, Pedro J. Gonçalves, Jan-Matthis Lueckmann, Cornelius Schröder, Jakob H. Macke
Pyro meets SBI at EuroSciPy 2025

Pyro Meets SBI: Unlocking Hierarchical Bayesian Inference for Complex Simulators

This talk introduces a novel approach that bridges SBI and Pyro to enable simulation-based hierarchical Bayesian inference, combining SBI’s ability to handle intractable simulators with Pyro’s expressive power for complex hierarchical structures.

August 2025 · Jan Teusen, Seth Axen
SBI Tutorial

Beyond Likelihoods: Bayesian Parameter Inference for Black-Box Simulators with sbi

A comprehensive hands-on tutorial at EuroSciPy 2025 teaching scientists and engineers how to use simulation-based inference (SBI) for Bayesian parameter estimation in complex simulators, providing full uncertainty quantification beyond simple best-fit approaches.

August 2025 · Jan Teusen

sbi reloaded: A toolkit for simulation-based inference workflows

We present sbi reloaded, a comprehensive update to the sbi Python package that provides researchers with state-of-the-art algorithms and tools for simulation-based inference workflows across scientific domains.

April 2025 · Jan Boelts*, Michael Deistler*, Manuel Gloeckler, Álvaro Tejero-Cantero, Jan-Matthis Lueckmann, Guy Moss, Peter Steinbach, Thomas Moreau, Fabio Muratore, Julia Linhart, Conor Durkan, Julius Vetter, Benjamin Kurt Miller, Maternus Herold, Abolfazl Ziaeemehr, Matthijs Pals, Theo Gruner, Sebastian Bischoff, Nastya Krouglova, Richard Gao, Janne K. Lappalainen, Bálint Mucsányi, Felix Pei, Auguste Schulz, Zinovia Stefanidi, Pedro Rodrigues, Cornelius Schröder, Faried Abu Zaid, Jonas Beck, Jaivardhan Kapoor, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke
SBI at EuroSciPy 2024

Simulated Data is All You Need: Bayesian Parameter Inference for Scientific Simulators with SBI

This talk covers SBI, a method for Bayesian parameter inference using simulated data, and introduces the sbi library, an open-source tool for practitioners and researchers.

August 2024 · Jan Teusen
Simulation-based inference for computational connectomics

Simulation-based inference for efficient identification of generative models in connectomics

We demonstrate how simulation-based inference can efficiently identify synaptic connectivity rules in dense cortical connectomes, enabling analysis of complex brain circuit organization.

August 2023 · Jan Boelts, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yanez, Daniel Baum, Hans-Christian Hege, Marcel Oberlaender, Jakob H. Macke
SBI Training

Simulation-Based Inference Training

Hands-on training in Simulation-Based Inference (SBI), designed for applications in neuroscience, astrophysics, and biology. Developed in collaboration with the University of Tübingen and the TransferLab at the appliedAI Institute for Europe.

April 2023 · Jan Teusen and Maternus Herold
Mixed Neural Likelihood Estimation

Flexible and efficient simulation-based inference for models of decision-making

We propose a new method to perform simulation-based inference for mixed data e.g., with continuous and discrete data types, like they often occur in models of decision-making.

July 2022 · Jan Boelts, Jan-Matthis Lueckmann, Richard Gao, Jakob H. Macke