SBI Workflow Overview

Simulation-Based Inference: A Practical Guide

We provide a practical guide for applying SBI methods, outlining a structured workflow with guidelines and diagnostic tools for every stage—from setting up simulators to validating results.

August 2025 · Michael Deistler*, Jan Boelts*, Peter Steinbach, Guy Moss, Thomas Moreau, Manuel Gloeckler, Pedro L. C. Rodrigues, Julia Linhart, Janne K. Lappalainen, Benjamin Kurt Miller, Pedro J. Gonçalves, Jan-Matthis Lueckmann, Cornelius Schröder, Jakob H. Macke
Pyro meets SBI at EuroSciPy 2025

Pyro Meets SBI: Unlocking Hierarchical Bayesian Inference for Complex Simulators

This talk introduces a novel approach that bridges SBI and Pyro to enable simulation-based hierarchical Bayesian inference, combining SBI’s ability to handle intractable simulators with Pyro’s expressive power for complex hierarchical structures.

August 2025 · Jan Teusen, Seth Axen
SBI Tutorial

Beyond Likelihoods: Bayesian Parameter Inference for Black-Box Simulators with sbi

A comprehensive hands-on tutorial at EuroSciPy 2025 teaching scientists and engineers how to use simulation-based inference (SBI) for Bayesian parameter estimation in complex simulators, providing full uncertainty quantification beyond simple best-fit approaches.

August 2025 · Jan Teusen

sbi reloaded: A toolkit for simulation-based inference workflows

We present sbi reloaded, a comprehensive update to the sbi Python package that provides researchers with state-of-the-art algorithms and tools for simulation-based inference workflows across scientific domains.

April 2025 · Jan Boelts*, Michael Deistler*, Manuel Gloeckler, Álvaro Tejero-Cantero, Jan-Matthis Lueckmann, Guy Moss, Peter Steinbach, Thomas Moreau, Fabio Muratore, Julia Linhart, Conor Durkan, Julius Vetter, Benjamin Kurt Miller, Maternus Herold, Abolfazl Ziaeemehr, Matthijs Pals, Theo Gruner, Sebastian Bischoff, Nastya Krouglova, Richard Gao, Janne K. Lappalainen, Bálint Mucsányi, Felix Pei, Auguste Schulz, Zinovia Stefanidi, Pedro Rodrigues, Cornelius Schröder, Faried Abu Zaid, Jonas Beck, Jaivardhan Kapoor, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

Dissecting origins of wiring specificity in dense cortical connectomes

We dissect the origins of wiring specificity in dense cortical connectomes, revealing how geometric and biological constraints shape synaptic connectivity patterns.

December 2024 · Philipp Harth, Daniel Udvary, Jan Boelts, Daniel Baum, Jakob H. Macke, Hans-Christian Hege, Marcel Oberlaender
SBI at EuroSciPy 2024

Simulated Data is All You Need: Bayesian Parameter Inference for Scientific Simulators with SBI

This talk covers SBI, a method for Bayesian parameter inference using simulated data, and introduces the sbi library, an open-source tool for practitioners and researchers.

August 2024 · Jan Teusen

Mind the Gap: Methods and Applicability of Simulation-Based Inference

Internal seminar at TransferLab discussing recent advances in simulation-based inference methods and their practical applications across scientific domains.

March 2024 · Jan Teusen
Simulation-based inference for computational connectomics

Simulation-based inference for efficient identification of generative models in connectomics

We demonstrate how simulation-based inference can efficiently identify synaptic connectivity rules in dense cortical connectomes, enabling analysis of complex brain circuit organization.

August 2023 · Jan Boelts, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yanez, Daniel Baum, Hans-Christian Hege, Marcel Oberlaender, Jakob H. Macke

Simulation-Based Inference for Computational Neuroscience

Invited presentation at the Bernstein Center for Computational Neuroscience Berlin on using SBI methods for parameter inference in models of neural circuits and behavior.

November 2022 · Jan Boelts

GATSBI: Generative Adversarial Training for Simulation-Based Inference

We introduce GATSBI, a method that combines generative adversarial networks with simulation-based inference to achieve better sample efficiency and accuracy in posterior estimation.

April 2022 · Poornima Ramesh, Jan-Matthis Lueckmann, Jan Boelts, Álvaro Tejero-Cantero, David S. Greenberg, Jakob H. Macke

Benchmarking Simulation-Based Inference

We present a benchmark suite for simulation-based inference, systematically evaluating different methods across tasks with varying dimensionality, simulation budgets, and amortization requirements.

April 2021 · Jan-Matthis Lueckmann, Jan Boelts, David S. Greenberg, Pedro J. Gonçalves, Jakob H. Macke

sbi: A toolkit for simulation-based inference

We introduce sbi, a Python package providing a unified interface for simulation-based inference methods, making these powerful techniques accessible to researchers across disciplines.

August 2020 · Álvaro Tejero-Cantero*, Jan Boelts*, Michael Deistler*, Jan-Matthis Lueckmann*, Conor Durkan*, Pedro J. Gonçalves, David S. Greenberg, Jakob H. Macke
sbi python package

sbi: Simulation-Based Inference

sbi is a Python package for simulation-based inference, providing a user-friendly interface to perform Bayesian parameter inference for simulator-based models with intractable likelihoods.

August 2020 · The sbi-dev team